

ENA Engineering Recommendation G83

Issue 2 2012

Type Verification Test Report

Type Approval and manufacturer/supplier declaration of compliance with the requirements of Engineering Recommendation G83/2.

SSEG Type ret	ference number			-	
SSEG Type			GW3048	8-EM /	GW3648-EM / GW5048-EM
System Suppl		Jiangsu Good	dWe Po	ower Supply Technology Co.,Ltd.	
Address	NO.1	89 Kun Lun Sł	nan Roa	ad, Suzhou New District, Jiangsu,china	
Tel +86 512 6239 799		8 Fax +86 512 6239 7972		+86 512 6239 7972	
E:mail	service@goodwe.cor	m.cn	Web site	-	http://www.goodwe.com.cn

		Connection Option	
Maximum rated capacity(use separate	3	kW single phase	
sheet if more than one connection option)	3.68	kW single phase	
	5	kW single phase	

SSEG manufacturer/supplier declaration.

I certify on behalf of the company named above as a manufacturer/supplier of Small Scale Embedded Generators, that all products manufactured/supplied by the company with the above SSEG Type reference number will be manufactured and tested to ensure that they perform as stated in this Type Verification Test Report, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of G83/2.

On behalf of Signed Xie Jing Huang min

_...

	ty. Harmonics					Р	
	nt is specified in s		t procedure in A	nnex A or B 1.4.1			
SSEG	rating per phase		1000/ 5		NV=MV*3.68/rpp		
	At 45-55% of			ted output			
		W		W		Littlehen Breett	
Harmonic	Measured	Normalised	Measured	Normalised	Limit in BS	Higher limit	
	Value (MV) in	Value (NV) in	Value (MV) in	Value (NV) in	EN61000-3-2	for odd	
	Amps	Amps	Amps	Amps	in Amps	harmonics 21 and above	
2nd	0.036	0.036	0.103	0.103	1.080	and above	
3rd	0.214	0.214	0.267	0.267	2.300		
4th	0.021	0.021	0.036	0.036	0.430		
5th	0.113	0.113	0.145	0.145	1.140		
6th	0.018	0.018	0.030	0.030	0.300		
7th	0.098	0.098	0.132	0.132	0.770		
8th	0.014	0.014	0.021	0.021	0.230		
9th	0.063	0.063	0.067	0.067	0.400	-	
10th	0.013	0.013	0.026	0.026	0.184		
11th	0.055	0.055	0.060	0.060	0.330		
12th	0.010	0.010	0.018	0.018	0.153		
13th	0.043	0.043	0.041	0.041	0.210		
14th	0.006	0.006	0.010	0.010	0.131		
15th	0.033	0.033	0.035	0.035	0.150		
16th	0.006	0.006	0.014	0.014	0.115		
17th	0.029	0.029	0.030	0.030	0.132		
18th	0.005	0.005	0.008	0.008	0.102	1	
19th	0.023	0.023	0.029	0.029	0.118		
20th	0.005	0.005	0.010	0.010	0.092		
21th	0.020	0.020	0.024	0.024	0.107	0.160	
22th	0.006	0.006	0.012	0.012	0.084		
23th	0.017	0.017	0.018	0.018	0.098	0.147	
24th	0.004	0.004	0.006	0.006	0.077		
25th	0.017	0.017	0.019	0.019	0.090	0.135	
26th	0.004	0.004	0.006	0.006	0.071		
27th	0.015	0.015	0.019	0.019	0.083	0.124	
28th	0.003	0.003	0.006	0.006	0.066		
29th	0.013	0.013	0.013	0.013	0.078	0.117	
30th	0.004	0.004	0.006	0.006	0.061		
31th	0.014	0.014	0.014	0.014	0.073	0.109	
32th	0.004	0.004	0.005	0.005	0.058		
33th	0.012	0.012	0.014	0.014	0.068	0.102	
34th	0.003	0.003	0.004	0.004	0.054		
35th	0.011	0.011	0.012	0.012	0.064	0.096	

_

....

....

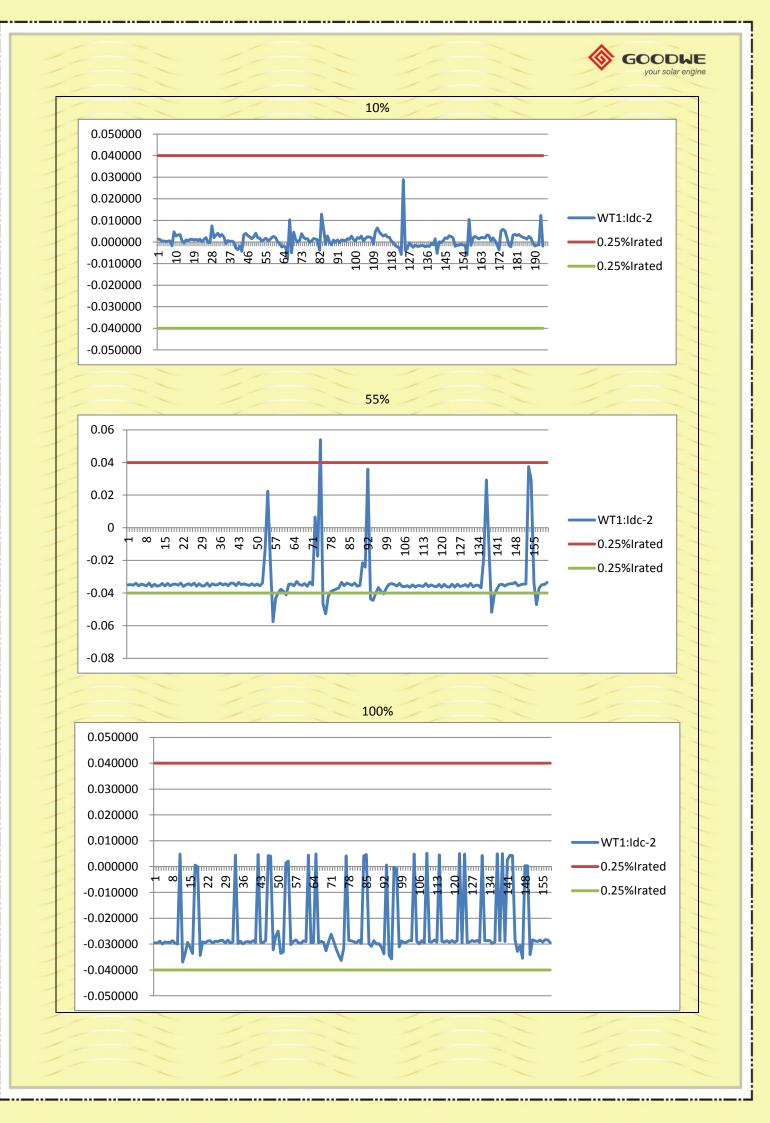
....

Ρ

36th	0.003	0.003	0.005	0.005	0.051	
37th	0.011	0.011	0.012	0.012	0.061	0.091
38th	0.004	0.004	0.005	0.005	0.048	
39th	0.009	0.009	0.010	0.010	0.058	0.087
40th	0.003	0.003	0.006	0.006	0.046	

Note:

The higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.


Flicker

The requirement is specified in section 5.4.2, test procedure in Annex A or B 1.4.3

	1	Starting		1	Stopping		Rur	nning
	d _{max}	d _c	d _(t)	d _{max}	d _c	d _(t)	d _{max}	d _c
Measured values	0	0	0	0	0	0	0	0
Normalised to standard				1			1	
impedance and 3.68kW for	0	0	0	0	0	0	0	0
multiple units	1			1/	-		1/	
Limits set under BS EN	4%	3.3%	3.3%	4%	3.3%	3.3%	4%	3.3%
61000-3-2	470	5.570	500ms	470	5.570	500ms	470	5.570
Test start date	2014/1/	10 8:45		Test end	date		2014/1/10	10:45

Power quality. DC inject	ion		D
The requirement is specified	in section 5.5, test procedu	re in Annex A or B 1.4.4	
Test level power	10%	55%	100%
Recorded value	28.8mA	22 mA	36.94 mA
As % of rated AC current	0.18%	0.14%	0.23%
Limit	0.25%	0.25%	0.25%

Diagramm of permanent DC-Injec

Ρ

Power Qual	ity. Power factor	

The requirement is specified in section 5.6, test procedure in Annex A or B 1.4.2

-		216.2 V	230 V	253 V	Measured at three voltage levels and at full
1 1 1	Measured value	0.998	0.998	0.998	output. Voltage to be maintained within ±1.5% of the stated level during the test.
1	Limit	>0.95	>0.95	>0.95	

-	Protection. Fr	equency test				/-	Р
_	The requirement	t is specified in s	ection 5.3.1, test	procedure in An	nex A or B 1.3.3		
-	Function	Set	ting	Trip	test	No trip test	
/		Frequency	Time delay	Frequency	Time delay	Frequency /	Confirm no
~		Frequency	Time delay	Frequency	Time delay	time	trip
_	LL/E stage 1		20.6	47 40 417	20.25 c	47.7Hz /	no trin
-	U/F stage 1	47.5 Hz	20 s	47.49 Hz	20.25 s	25s	no trip
-	U/E stage 2	47 Hz	0.5.0	46.99 Hz	832ms	47.2Hz /	no trin
~	U/F stage 2	47 112	0.5 s	40.99 HZ	8521115	19.98s/20.4	no trip
-		\sim				46.8Hz /	no trin
~						0.48s/819ms	no trip
-	O/E stage 1	51.5 Hz	90 s	51.52 Hz	90.2 s	51.3Hz /	no trin
-	O/F stage 1	51.5 HZ	90 5	51.52 HZ	90.2 5	95s	no trip
-	O/E stage 2	52 Hz	0.5 s	52.01 Hz	908 ms	51.8Hz /	no trin
~	O/F stage 2	52 112	0.5 \$	52.01 HZ	908 1115	89.98s/90.3s	no trip
-						52.2Hz /	no trin
-						0.48s/897ms	no trip
		< /					

_	Protection. Vo	ltage test					Р
-	The requirement	t is specified in se	ection 5.3.1, test	procedure in An	nex A or B 1.3.2		
~	Function	Set	ting	Trip	test	No trij	o test
-		Voltago	Time delay	Voltago	Time delay	Voltage /	Confirm no
-		Voltage	Time delay	Voltage	Time delay	time	trip
-	U/V stage 1	200.1 V	2.5 s	199.91 V	2.94 s	204.1V/	no trin
/	U/V stage 1	200.1 V	2.5 5	199.91 V	2.94 5	3.5s	no trip
~	U/V stage 2	1941/	0.5.4	182.021/	040 mg	188V /187.97	no trin
/	U/V stage 2	184 V	0.5 s	183.93V	940 ms	2.48s/2.95s	no trip
~		<				180V /179.96	no trin
/						0.48s/940ms	no trip
~		262.2.1	10-	262 71 1	1.445	258.2V	
/	O/V stage 1	262.2 V	1.0 s	262.71 V	1.44s	2.0s	no trip
-		272 7.1	0.5.4	275 4 14	052 mg	269.7V/269.7	
/	O/V stage 2	273.7 V	0.5 s	275.4 V	952 ms	0.98s/1.432s	no trip
-				< / ,		277.7V/277.7	no trin
/						0.48s/928ms	no trip

Ρ

inverters can be tested to BS EN 62116. Test Power and 33% 66% 100% 33% 66% 100% imbalance -5% Q -5% Q -5% P +5% Q +5% Q +5% P Trip time limit is	Protection. Loss	of Mains test					
imbalance -5% Q -5% Q -5% P +5% Q +5% Q +5% P	inverters can be te	sted to BS EN 62	116.				
	Test Power and	33%	66%	100%	33%	66%	100%
Trin time Limit is	imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
0.5s 220ms 246ms 400ms 230ms 260ms 284ms	Trip time. Limit is 0.5s	220ms	246ms	400ms	230ms	260ms	284ms

Protection. Frequency c	Protection. Frequency change, Stability test								
The requirement is specified	The requirement is specified in section 5.3.3, test procedure in Annex A or B 1.3.6								
	Start	Change	End	Confirm no					
	Frequency		Frequency	trip					
Positive Vector Shift	49.5Hz	+9 degrees		no trip					
Negative Vector Shift	50.5Hz	- 9 degrees		no trip					
Positive Frequency drift	49.5Hz	+0.19Hz/sec	51.5Hz	no trip					
Negative Frequency drift	50.5Hz	-0.19Hz/sec	47.5Hz	no trip					

Protection. Re-connection time

The requirement is specified in section 5.3.4 Automatic Reconnection, test procedure in Annex A or B 1.3.5

Test should prove that the reconnection sequence starts after a minimum delay of 20 seconds for restoration of voltage and frequency to within the stage 1 settings of table 1.

. . .

	Voltage		-
Time delay setting		Measured delay time(s)	1
20s		46.6 s	1
			1
	Frequency		/
Time delay setting		Measured delay time(s)	1
20s		46.6 s	/
	5 1/-		1

-		Checks on no reconnection when voltage or frequency is brought to just outside					
-		stage 1 limits of table 1.					
-		At 266.2V	At 196.1V	At 47.4Hz	At 51.6Hz		
1 1 1	Confirmation that the SSEG does not re-connect.	no reconnection	no reconnection	no reconnection	no reconnection		

				GOODWE your solar engine
Fault level contribution				Р
The requirement is specified in sec	.4.6			
For a directly coupl	ed SSEG		For a Inver	ter SSEG
Parameter	Symbol Value	Time after fault	Volts	Amps
Peak Short Circuit current		20ms	-6.9 V	2.7A
Initial Value of aperiodic current		100ms	-7.2 V	-600mA
Initial symmetrical short-circuit current*		250ms	-6.7V	-600mA
Decaying (aperiodic) component of short circuit current*		500ms	-7 V	-600mA
Reactance/Resistance Ratio of source*		Time to trip	58ms	In seconds

Self Monitoring – Solid state Disconnection	N/A
The requirement is specified in section 5.3.1, No specified test requirements.	N/A
Not applicable since electro-mechanical relays are used.	1

Additional comments

_

....

.......

GW3648D-ES is similar to GW3648S-ES in circuit and construction except for dual mppt. The test result can refer to GW3648S-ES .

.....
